本文共 1531 字,大约阅读时间需要 5 分钟。
The idea is similar to Strobogrammatic Number II: generate all those in-range strobogrammatic numbers and count.
You may refer to for a very readable code, which I have rewritten in C++ below.
1 class Solution { 2 public: 3 Solution() { 4 mp = { { '0', '0'}, { '1', '1'}, { '6', '9'}, { '8', '8'}, { '9', '6'}}; 5 } 6 7 int strobogrammaticInRange(string low, string high) { 8 int ans = 0, l = low.length(), u = high.length(); 9 for (int i = l; i <= u; i++) {10 string temp(i, ' ');11 strobogrammaticCount(temp, ans, low, high, 0, i - 1);12 }13 return ans;14 }15 private:16 unordered_mapmp;17 void strobogrammaticCount(string temp, int& ans, string& low, string& high, int lo, int hi) {18 if (lo > hi) {19 if ((temp[0] != '0' || temp.length() == 1) && less(low, temp) && less(temp, high))20 ans++;21 return;22 }23 for (auto m : mp) {24 temp[lo] = m.first;25 temp[hi] = m.second;26 if ((lo == hi && m.first == m.second) || lo < hi)27 strobogrammaticCount(temp, ans, low, high, lo + 1, hi - 1);28 }29 }30 bool less(string& s, string& t) {31 int m = s.length(), n = t.length(), i;32 if (m != n) return m < n;33 for (i = 0; i < m; i++)34 if (s[i] == t[i]) continue;35 else break;36 return i == m || s[i] < t[i];37 }38 };
转载地址:http://dagja.baihongyu.com/